Kod genetyczny to sposób, według którego można przetłumaczyć informację genetyczną z języka nukleotydów na język aminokwasów. Istnieją pewne reguły kodu genetycznego, które można opisać w następujący sposób: TRÓJKOWY. Badania wykazały, że trzy leżące obok siebie nukleotydy tworzą podstawową jednostkę informacyjną
Sekwencja nuleotydów. We wszystkich organizmach występują miliony białek , a każde z nich jest zbudowane z aminokwasów . Informacje o tym , jaka jest kolejność poszczególnych aminokwasów w białku , są zaszyfrowane w DNA. Właściwości kodu genetycznego – sposób zapisu informacji o budowie białek w sekwencji DNA nazywamy kodem
PK ! ôˆÚx [Content_Types].xml ¢ ( ´”ËjÃ0 E÷…þƒÑ¶ØJº(¥ÄÉ¢ e hú Š4vÔê…¤¼þ¾c;1%814ÉÆ ÍÜ{Ï 3£ÉF«d >Hkr2Ì $ à ¦ÌÉ×ì
Podstawy genetyki Proponowana literatura. Bal J. Biologia molekularna w medycynie – Elementy genetyki klinicznej. PWN Warszawa, 2011. Boczkowski K. Zarys genetyki medycznej.
Odczytaj z kodu genetycznego jakie aminokwasy i w jakiej kolejnosci bedzie wbudowane w białko z nastepujacej s… Natychmiastowa odpowiedź na Twoje pytanie. milunia94 milunia94
Tabela kodu genetycznego umożliwia szybkie sprawdzenie, które kodony kodują poszczególne aminokwasy, a także które kodony są sygnałem do rozpoczęcia lub zakończenia translacji. Źródło: Mouagip, Wikimedia Commons , domena publiczna.
KcqS6M. Przejdź do listy zasobów. sprawdzanie wiedzy Opis: Liczba zadań: 5 Liczba punktów: 5 Liczba grup: 2 Szacowany czas: 9min Sprawdzane umiejętności: Analiza tekstu źródłowego Autor: Nowa Era Filtry: testy Poziom: Część 3 Źródło zadań: Genetyka molekularna Gen a genom. Budowa i rola kwasów nukleinowych Odczytywanie informacji genetycznej Cechy kodu genetycznego Zaktualizowany: 2021-09-15
Rozszyfrowanie kodu genetycznego i jego roli w syntezie bialekWstępJednym z odkryć, które można nazwać rewolucyjnym i mającym ogromny wpływ na życie ludzi,było rozszyfrowanie sposobu kodowania białek przez kwas deoksyrybonukleinowy, czyli powszechniedzisiaj znane pod tą nazwą DNA. Otworzyło to drzwi dla gwałtownego rozwoju wielu dziedzin nauki:biologii molekularnej, inżynierii genetycznej, medycyny czy nad kodem genetycznym prowadzone były już od XIX wieku, kiedy to Grzegorz Mendelzaprezentował zasadę dziedziczenia na przykładzie roślin groszku. Naukowcy zaczęlizastanawiać się, co właściwie jest nośnikiem informacji przekazywanej z pokolenia na pokolenie i determinu-jącej specyficzne cechy u organizmów crick - podwojna helisaKod genetyczny – reguła, według której informacja genetyczna, zawarta w sekwencji nukleotyd ó w kwasu nukleinowego (DNA lub RNA), w komórkach wszystkich organizmów może ulegać „tłu-maczeniu” na kolejność aminokwas ó w w ich bia łkach w procesie biosyntezy białek (a konkretnietranskrypcji i translacji).Kodon, utworzony przez trzy kolejne zasady azotowe nukleotyd ó w w kwasie nukleinowym ko-duje jeden aminokwas w łańcuchowej strukturze białka. Jednak trzem kodonom (UAA, UAG i UGA) nie odpowiadają żadne aminokwasy. Kodony te, zwane terminacyjnymi albo kodonami nonsensowymi, kodują polecenie przerwania biosyntezy peptydu (białka). Np. w sekwencji za-sad AAAAAAUAA kodon UAA jest kodonem STOP (w mRNA; jego odpowiednikiem w DNA jest “TAA").1. Trójkowy – trzy leżące obok siebie nukleotydy tworzą podstawową jednostkę informacyjną (triplet, inaczej kodon).2. Niezachodzący – kodony nie zachodzą na siebie. Każdy nukleotyd wchodzi w skład tylko jednego kodonu, np. w sekwencji AAGAAA pierwsze trzy zasady (AAG) kodują jeden aminokwas (tu: lizynę) a następny kodon zaczyna się dopiero od 4. zasady, nie wcześniej. Wyjątek od tej zasady może stanowić kod genetyczny niektórych wirusów, gdzie ten sam fragment kodu jest odczytywany dwu- lub trzykrotnie, z przesunięciem w fazie[1].3. Bezprzecinkowy – każdy nukleotyd w obrębie sekwencji kodujących wchodzi w skład jakiegoś kodonu, więc pomiędzy kodonami nie ma zasad bez znaczenia dla Zdegenerowany – różne kodony (różniące się na ogół tylko trzecim nukleotydem) mogą kodować ten sam aminokwas, tzn. prawie wszystkie aminokwasy mogą być zakodowane na kilka sposobów. Przykładowo lizyna kodowana jest zarówno przez kodon AAA, jak i AAG. Dzięki temu część zmian informacji genetycznej w wyniku mutacji nie znajduje swojego odbicia w sekwencji aminokwasów. Wynika to z liczby kodonów oraz aminokwasów i zasady szufladkowej Jednoznaczny (zdeterminowany[1]) – danej trójce nukleotydów w DNA lub RNA odpowiada zawsze tylko jeden Kolinearny (inaczej współliniowy[1]) – kolejność ułożenia aminokwasów w białku jest wiernym odzwierciedleniem ułożenia odpowiednich kodonów na matrycowym RNA (mRNA)[2].7. Uniwersalny – powyższe zasady są przestrzegane dość dokładnie przez układy biosyntezy białek u wszystkich organizmów, jakkolwiek zdarzają się niewielkie odstępstwa od tej prawidłowości wśród wirusów, bakterii, pierwotniak ó w , grzybów i w mitochondriach[3]. Na przykład kodon UAA odczytany przez rybosomy mitochondriów powoduje nie zakończenie syntezy białka (jak to ma miejsce w rybo-somach cytoplazmy podstawowej i siateczki śr ó dplazmatycznej ), ale dobudowanie do niego trypto-fanu; natomiast kodon UGA zamiast przerwania translacji może powodować dołączenie selenocys-teiny (wymagane jest do tego występowanie w mRNA dodatkowego sygnału, tzw. SECIS), a kodon UAG – dobudowanie pirolizyny do tworzącego się łańcucha polipeptydowego (białka).Mówi się również, że kod genetyczny ma charakter pośredni, co oznacza, że matryce DNA nigdynie są bezpośrednio wykorzystywane do „układania” DNAZachodzące w procesie translacji dopasowanie kodonu w mRNA z odpowiadającym mu an-tykodonem w tRNA (cząsteczce dostarczającej aminokwas) nie zawsze musi być idealne. Zgod-nie z zasadą tolerancji (hipotezą tolerancji) zawsze musi być zachowana jedynie zgodność
opisuje, w jaki sposób sekwencja zasad kwasu nukleinowego zostaje przekształcona w sekwencję aminokwasów podczas biosyntezy białek; elementarną jednostką kodującą jest trójka nukleotydów (kodon); kolejność ułożenia 3 nukleotydów w kodonie wyznacza dany aminokwas w białku, a kolejność kodonów — ułożenie następujących po sobie aminokwasów; w DNA występują tylko 4 nukleotydy różniące się między sobą rodzajem zasady azotowej; z 4 różnych nukleotydów mogą powstać 43, czyli 64, różne kodony; określony aminokwas może być zakodowany przez kilka różnych kodonów. W kodzie genetycznym, oprócz kodonów odpowiadających poszczególnym aminokwasom, istnieją znaki sygnalizujące początek i koniec zapisu danego białka; początkowym aminokwasem we wszystkich białkach jest metionina; kodon jej odpowiadający (AUG) pełni 2 funkcje: jeśli znajduje się na początku sekwencji nukleotydów, informuje, że tu zaczyna się białko, a jeśli gdziekolwiek indziej, odpowiada zwykłej metioninie; 3 trójki: UUA, UAG lub UGA (tzw. kodony terminacyjne) odpowiadają sygnałowi „stop” — stanowią zakończenie białka. Kod genetyczny jest bezprzecinkowy, tzn. kolejne trójki nie są od siebie oddzielane specjalnymi znakami. Zapis w DNA dotyczący białka wygląda, w pewnym uproszczeniu, następująco: pierwszy kodon odpowiada metioninie, potem następują kolejne trójki odpowiadające kolejnym aminokwasom białka, ostatni zaś kodon informuje o zakończeniu syntezy białka. W DNA genu oprócz egzonów (tj. sekwencji kodujących) mogą występować także introny (tj. odcinki niekodujące).Odczytywanie kodu genetycznego przy syntezie białek nie odbywa się bezpośrednio na DNA; sekwencje nukleotydowe DNA są kopiowane na cząsteczki RNA (transkrypcja), a następnie na podstawie ich sekwencji jest syntetyzowane białko (translacja). Kod genetyczny jest w zasadzie uniwersalny — te same trójki kodują te same aminokwasy w całym świecie ożywionym; jest to uważane za dowód jedności żywych organizmów i ich wspólnego pochodzenia; istnieją jednak wyjątki od tej zasady: kilka nieco innych odczytów kodonów spotyka się w DNA mitochondriów, pojedyncze różnice występują także w niektórych organizmach jednokomórkowych. Kod genetyczny rozszyfrowali ok. 1966 Nirenberg, Holley i Khorana.
W strukturze DNA zapisana jest informacja o strukturze białek, ponieważ: – białka są podstawowym i specyficznym budulcem każdego żywego organizmu – są enzymami, które umożliwiają syntezę wszystkich innych związków chemicznych DNA BIAŁKO polimer polimer n x nukleotyd n x aminokwas kolejność nukleotydów (sekwencja) kolejność aminokwasów 4 różne nukleotydy 20 różnych aminokwasów Kod genetyczny jest kodem trójkowym, to znaczy, że 3 kolejne nukleotydy zapisują informacje o jednym aminokwasie w białku. KODON (TRIPLET) = 3 nukleotydy Właściwości kodu genetycznego: – trójkowy – liniowy – bezprzecinkowy -między kodonami nie ma nukleotydów oddzielających kodony – niezachodzący (nie nakładający się) – każdy nukleotyd nie ma części wspólnej – jednoznaczny – dany kodon zapisuje tylko jeden aminokwas – zdegenerowany – kilka kodonów może zapisywać ten sam aminokwas – w nim jest tylko jeden kodon start -> AUG, który koduje metioninę; trzy kodony stop -> UAA, UAG, UGA, które nie zapisują żadnego aminokwasu – uniwersalny – u wszystkich żywych organizmów te same kodony zapisują aminokwasy
Na rysunku przedstawiono główne etapy ekspresji informacji genetycznej. Na podstawie: Solomon, Berg, Martin, Ville, Biologia. Warszawa 1996, s. 279. a) Korzystając z informacji podanych na rysunku i własnej wiedzy, oceń prawdziwość poniższych stwierdzeń. Wpisz znak X w odpowiednie komórki tabeli. Lp. Informacja Prawda Fałsz 1. Każda z nici DNA oraz nić mRNA zbudowane są z podobnych podjednostek chemicznych połączonych ze sobą za pomocą takich samych wiązań kowalencyjnych. 2. Dwuniciowy DNA oraz mRNA zbudowane są z nukleotydów purynowych i pirymidynowych, a stosunek ilościowy tych nukleotydów w obu kwasach wynosi 1 : 1. 3. Strukturę przestrzenną DNA i mRNA stabilizują wiązania wodorowe pomiędzy komplementarnymi zasadami azotowymi nukleotydów. b) Stosując oznaczenia literowe zasad azotowych, podaj kodon 2 i kodon 3 w mRNA oraz w nici matrycowej DNA. c) Zaznacz prawidłowe dokończenie zdania. Na podstawie przedstawionego schematu ekspresji informacji genetycznej można stwierdzić, że A. podczas transkrypcji trójkowy kod genetyczny ulega rozszyfrowaniu. B. podczas translacji dany kodon znajdujący się w DNA zostaje odczytany dwa razy. C. podczas transkrypcji – mimo zmiany zapisu informacji genetycznej – nie zmienia się jej sens. D. zmiana nukleotydu w danym kodonie powoduje zmianę jednego aminokwasu w białku. Wymagania ogólne I. Poznanie świata organizmów na różnych poziomach organizacji życia. Uczeń […] przedstawia procesy […] biologiczne […]; IV. Poszukiwanie, wykorzystanie i tworzenie informacji. Uczeń odczytuje, selekcjonuje, porównuje […] informacje pozyskane z różnorodnych źródeł […]; Wymagania szczegółowe VI. Genetyka i biotechnologia. 1. Kwasy nukleinowe. Uczeń: 4) […] porównuje strukturę i funkcję cząsteczek DNA i RNA; 3. Informacja genetyczna i jej ekspresja. Uczeń: 2) przedstawia poszczególne etapy prowadzące od DNA do białka (transkrypcja, translacja) […]; Wskazówki do rozwiązania zadania a) Mimo że znasz już budowę DNA i RNA (mRNA), to przeanalizuj rysunek niezbędny do realizacji tego polecenia. Zwróć uwagę na symbole graficzne poszczególnych nukleotydów wchodzących w skład DNA i mRNA. Przypomnij sobie, że w obu rodzajach cząsteczek występują nukleotydy z zasadami azotowymi należącymi do puryn i pirymidyn, a nukleotydy te łączą się ze sobą kowalencyjnie i tak powstaje nić polinukleotydowa. Koniecznie pamiętaj o dwuniciowej strukturze DNA i o jednoniciowej strukturze mRNA. W przypadku dwuniciowej cząsteczki DNA pamiętaj o tym, w jaki sposób nici te są ze sobą połączone (utrzymywane razem) w formie dwuniciowej cząsteczki. Popatrz jeszcze raz na rysunek i zauważ, która nić polinukleotydowa DNA jest wykorzystywana w pierwszym etapie ekspresji informacji genetycznej, i w jaki sposób. Następnie przyjrzyj się cząsteczce mRNA oraz zobacz, jaką rolę pełni ona w drugim etapie ekspresji informacji genetycznej. b) Rozwiązując to polecenie, przypomnij sobie i zastosuj regułę komplementarności zasad azotowych występujących w nukleotydach DNA oraz w nukleotydach RNA. W tym celu uważnie przyjrzyj się symbolom graficznym tych zasad (nukleotydów) zastosowanym na rysunku. Po odszukaniu kodonów nr 2 i 3 w DNA oraz w mRNA, uważnie sprawdzaj w każdym z nich symbole graficzne kolejnych trzech nukleotydów. Zastosuj regułę komplementarności zasad azotowych między cząsteczkami: DNA i RNA. c) W realizacji tego polecenia korzystaj z wiedzy o przebiegu pierwszego etapu ekspresji informacji genetycznej – syntezie mRNA (transkrypcji) oraz o drugim etapie – translacji, czyli biosyntezie białka. Naturalne jest więc wykorzystanie wiedzy o kodzie genetycznym. Zwróć uwagę na sformułowania: rozszyfrowanie kodu genetycznego oraz odczytywanie kodonu. Podczas zastanawiania się nad poprawnością kolejnych wariantów zakończenia zdania, korzystaj z pomocy w postaci informacji podanych na schemacie. Przykłady poprawnych odpowiedzi a) 1. P 2. F 3. F b) Kodon 2 w mRNA: ACU Kodon 2 w DNA: TGA Kodon 3 w mRNA: UGC Kodon 3 w DNA: ACG c) C
odczytywanie kodu genetycznego zadania